教案在编写的过程中,你们一定要考虑创新教学方法,不管是谁在写教案的时候,都要注意逻辑思路是清晰的,下面是高中范文网小编为您分享的六年级百分数教案5篇,感谢您的参阅。
六年级百分数教案篇1
在六年级(上册)认识百分数里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。
1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。
解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让学生思考实际造林比原计划多百分之几应该怎样理解。明确这个问题是求实际造林面积超过原计划的公顷数相当于计划造林公顷数的百分之几,从而产生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位1(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的部分是原计划的百分之几。练习一第1题利用已知的是百分之几求增长百分之几,或者利用已知的增加百分之几求是百分之几,通过百分数之间的相互转化,进一步理解增加百分之几的含义,还带出了下降百分之几这个概念。
实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写试一试的目的就是要突出这些不同,要求教师在适当的时候组织学生将试一试和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使学生更正确地理解是百分之几与高百分之几的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式呈现求百分数的问题,首次把百分数应用于统计表中。
2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。
例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题60万元的5%是多少,然后把求一个数的几分之几是多少的经验迁移过来,得到求一个数的百分之几是多少,也用乘法计算,于是列出算式605%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,学生就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算605%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在练一练里,由于6.25/100的计算比6.20.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。
练习二第1~4题是配合例2编排的,要引导学生抓住求什么的百分之几是多少进行思考。如,第1题是求门票收入的3%,因此接待游客18万人次是多余的信息。又如,第4题是求月收入超过1600元的部分的百分之几是多少,因此要先算出应纳税部分的元数,并找到相应的税率。
例3计算利息,应用求一个数的百分之几的方法解决稍复杂的实际问题。由于多数学生缺少这方面的生活经验,因此教材在底注中解释了本金、利息、利率的含义,并给出了计算利息的方法:利息=本金利率时间。要结合例题里的表格,让学生知道利息和本金、年利率、存期有关,一般情况下,本金越多,存期越长,年利率越高,到期后获得的利息就多。还要让学生知道,存期一年,到期可得的利息是本金的2.25%;存期二年,每年的利息是本金的2.70%这样,学生就能理解计算利息公式里的数量关系。
试一试利用例3求得的应得利息,继续计算缴纳利息税以后的实得利息。要让学生懂得实得利息是应得利息扣除缴纳的利息税以后剩下的利息,明白为什么先算出利息税是多少元的道理。从例题到试一试的全过程,就是我国现行的银行存款实得利息的计算方法:先根据本金、存期和利率算出应得利息,再扣除缴纳的利息税得到实得利息。学生完成练一练和练习二第5~7题就有思路了。要注意的是,计算实得利息的步骤比较多,练一练和第6、7题都采用连续提问的形式,适当降低了解题时的思维难度。
3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。
例4教学与折扣有关的问题,也是百分数的实际应用。教材先对打折作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。原价和实际售价有什么关系是这道例题的教学重点,要从原价打八折出售得出原价80%=实际售价。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求《趣味数学》原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。求出《趣味数学》的原价15元以后,对学生提出检验的要求,而且采用了两种检验方法。依据折扣的含义,既可以用实际售价除以原价,看是不是打了八折;也可以看原价的80%是不是实际售价12元。这样安排,不仅检验了原价15元是正确的,还多角度表现了原价、实际售价、折扣三者的关系,在进一步理解折扣的同时,沟通了三种简单的百分数问题的联系。练一练求《成语故事》的原价,也要求检验,让学生独立经历与例4同样的学习过程,再次体会问题中的数量关系。
练习三的编排大致分成两段,第1~4题是第一段,在理解折扣含义的基础上正确应用数量关系。第1、2题分别求打折后的实际售价与打折前的原价,都可以根据原价折扣=实际售价来解答。第4题求折扣,教材先让学生回答第3题,把按原价的百分之几出售改说成打几折出售,体会求几折只要求百分之几,为第4题作了铺垫。第5~9题是第二段,仍然以求实际售价或求原价为主要内容,灵活应用数量关系。第5题分别求实际售价与实际比原来便宜的元数,这里有简单问题与稍复杂问题的比较。第6题分别求实际售价与原价,是两种折扣问题的比较。第7、8题让购物问题更复杂一些,有利于学生在变化的问题情境中把握基本的数量关系。
例5和例6是较复杂的已知一个数的百分之几是多少,求这个数的问题,都列方程解答。两道例题分别把相并关系和相差关系作为列方程的相等关系,虽然相并与相差是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5的线段图右边的括号里填36,体会男生人数与女生人数合起来是美术组的总人数。例6在线段图上突出十月份比九月份节约用水的那一段,引导学生注意两个月用水量之间的相差关系。教材完整地写出两道题的等量关系,让学生感受等量关系式右边美术组的总人数、十月份用水的吨数都已知,在这样的情况下,列方程是解题的有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x,设九月份的用水量为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位1的数量,还很容易用含有字母的式子表示出女生人数,表示出十月份比九月份节约用水的吨数。
两道例题列出的方程里都有两个x,还含有百分数,解方程时要先化简方程的左边,再应用等式的性质。例题呈现了解方程的过程,并在练习四里安排三道解方程的习题,提醒教师要帮助学生正确地解方程。检验不是把未知数的值代入方程,而是要检验得数是否符合实际问题里的数量关系。具体地说,例5要检验男、女生的人数之和是不是36,还要检验女生人数是不是男生的80%。例6要检验十月份用水的吨数是不是比九月份节约20%,或者检验九月份的用水量节约20%,是不是440立方米。只有符合实际问题的得数才是正确答案。
练一练要先说数量关系再解答,突出寻找等量关系是解答这些题的关键,也是指向解题难点的基础训练。要引导学生从分析题目里已知的那个百分数开始,有条理地思考。如第11页练一练,种蓖麻的棵数是向日葵的75%,向日葵的棵数是单位1的量,蓖麻的棵数是单位1的75%,它们一共有147棵,等量关系就是蓖麻的棵数+向日葵的棵数=147;向日葵比蓖麻多21棵,等量关系就是向日葵的棵数-蓖麻的棵数=21。再如第12页练一练,美术组的人数比舞蹈组多20%,舞蹈组的人数是单位1的量,美术组比舞蹈组多的人数是单位1的20%,等量关系是舞蹈组的人数+美术组比舞蹈组多的人数=美术组的人数。解答练习四里的实际问题,也应经常让学生说说数量关系。
练习四第1~4题配合例5编排,第4题第(1)题曾经在六年级(上册)教过,那时也是列方程解答的,从第(1)题到第(2)题带出了稍复杂的分数问题。整数、分数、百分数都能表示两个数量间的倍数关系,第4题把貌似不同的问题组织在一起,凸现这些问题在本质上的联系。第5~9题是配合例6编排的,在第9题里把简单的百分数问题和较复杂的百分数问题编排在一起,可以适当进行比较。第10~16题是一堂练习课的内容,第11~13题是百分数的问题,进一步熟悉两道例题的解题思路,第14~16题是三道已知一个数的几分之几,求这个数的问题,促使例题的思考方法水平迁移。在六年级(上册)只教学稍复杂的分数乘法问题,另一些分数实际问题则安排在这里教学。
教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位1用乘法,单位1未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。
六年级百分数教案篇2
教学目标
使学生理解并掌握百分数和分数、小数之间互化的方法.
教学重点
使学生掌握百分数与分数、小数互化的方法,并能熟练运用.
教学难点
1.在学生掌握百分数与小数基本转化规律的基础上,如何引导学生通过观察分析、概括,掌握它们互化的简便方法.
2.把不能化成有限小数的分数化成百分数.
教学设计
一、复习准备
(一)复习
1.读出下列的百分数.
20% 120% 100.5% 12.3%
2.说出下列小数所表示的意义.
0.8 1.2 0.125 1.75
3.把下面小数化成分数.
0.2 1.5 0.375 1.25
4.把下面分数化成小数.
5.把下面各数写成百分数.
(二)引入
在生产、工业和生活中进行统计和分析时,为了便于比较和计算,有时要把小数或分数化成百分数,有时要把百分数化成分数或小数.这节课,我们就来学习百分数和分数、小数的互化.
教师板书课题:百分数和分数、小数的互化
二、新授教学
(一)百分数和小数互化.
1.教学例1
把0.25、1.4.0.123化成百分数.
(1)小组讨论转化的方法
(2)教师提问:小数化成百分数分几步进行?0.25怎样化成百分数?
教师板书:
(3)学生独立将1.4、0.123化成百分数.
教师板书:
(4)做一做:把下面各小数化成百分数.
0.38、1.05、0.055、3
(5)总结把小数化成百分数的规律.
小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.
板书:
(6)口答:把下列各数化成百分数.
0.35 0.07 1.3 2.24 5
我们已经学会了小数化成百分数的方法,那么,百分数怎样化成小数呢?
2.教学例2
把2.7% 124% 0.4%化成小数.
(1)小组讨论转化的方法
(2)学生试做,老师巡视指导.
(3)集体订正.
教师板书:
(4)做一做:把15% 80% 3.5%化成小数
(5)总结把百分数化成小数的规律.
小结:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
板书:小数 百分数
(6)口答:把下面百分数化成分数:60% 12.5% 120%
(7)小结百分数与小数互化的方法.
(二)百分数和分数的互化.
1.教学例3
把 、 、 化成百分数
(1)思考回答:
① 、 、 能直接化成百分数吗?
②把百分数变成什么样的数就可以化成百分数?
(2)学生试做并订正.
教师说明:分子除以分母,如遇到除不尽时,通常商算到小数第四位,再用四舍五入法
取三位小数.同时要注意等号和约等号的使用.
六年级百分数教案篇3
教学目标
1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
教学重点
本金、利息、利率的含义。
教学难点
计算定期存款的利息。
教学过程
一、师生交流
课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。
师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。
让学生汇报调查的情况,并出示课本的银行存款利率表。
师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。
二、探讨新知
1、计算公式
师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。
利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。
请学生讨论利息的算法,老师适当的提示。
板书 利息=本金×利率×时间
全班齐读公式。
师:要求利息就必须要知道什么?
2、计算利息
师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。
出示题目:
笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?
淘气说:我存三年期的300元,到其实有多少利息? 师:笑笑存的本金是多少?存款的时间是多长?利率是多少?
怎样算?淘气呢?
学生回答后,师板书。
笑笑得到的利息:300×2.52%×1=7.56(元)
淘气得到的利息:300×3.69%×1=33.21(元)
师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。
师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。
三、巩固练习
1、李老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算。到期时,李老师的本金和利息共有多少元?
先让学生自己计算,在全班讲评。
2、光明小学为400名学生投保“平安保险”,保险金额每人5000元,保险期限一年。按年保险费率0.4%计算,全校共应付保险费多少元
先提醒学生说出保险金额、年保险费率的含义,再让学生计算。
四、课后总结
1、同学们现在已经知道了把压岁钱存到银行可以获得利息,而存款方式有好几种,今后打算怎么处置自己的压岁钱呢?
如果把它存到银行,该怎样存呢?
建议学生课后亲自到银行存一次钱。
2、这节课你学到了哪些知识?
五、布置作业
六年级百分数教案篇4
1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。
儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的关键是弄清谁是单位“1”,谁和谁相比。
2.体会算法的多样化。
在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。
课前准备
教师准备 ppt课件 学情检测卡
教学过程
⊙复习导入
1.复习。
(1)课件出示复习题。
春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的学生有多少人?
(2)引导学生思考。
①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)
②用什么方法计算?怎样列式?(用乘法计算,列式为750×)
(3)尝试解答。(指名板演,其他学生自己做)
2.导入。
师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)
设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。
⊙学习新课
旧知迁移,探究新知。
(1)课件出示教材85页例2。
(2)学生尝试解题,交流计算过程。
预设
生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。
六年级百分数教案篇5
教学目标
1.使学生了解本金、利息、利率、利息税的含义.
2.理解算理,使学生学会计算定期存款的利息.
3.初步掌握去银行存钱的本领.
教学重点
1.储蓄知识相关概念的建立.
2.一年以上定期存款利息的计算.
教学难点
“年利率”概念的理解.
教学过程
一、谈话导入
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.
二、新授教学
(一)建立相关储蓄知识概念.
1.建立本金、利息、利率、利息税的概念.
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.
(2)教师板书:
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
2.出示一年期存单.
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)
教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.
4.出示国家最新公布的定期存款年利率表.
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.
(3)那什么是年利率呢?
(二)相关计算
张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?
1.帮助张华填写存单.
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结
请你说一说如何计算“利息”?
三、课堂练习
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息
捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%
(2)800×11.7%×2
(3)800×(1+11.7%)
(4)800+800×11.7%×2×(1-20%)
3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?
四、巩固提高
(一)填写一张存款单.
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?
五、课堂总结
通过今天的学习,你有什么收获?
六、布置作业
1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?
2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?
3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?
七、板书设计
百分数的应用
本金 利息 利息税 利国利民
利率:利息与本金的比值叫利率.
利息=本金×利率×时间
探究活动
购物方案
活动目的
1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.
2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.
3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.
活动过程
1.教师出示价格表
a套餐原价:16.90元 现价:10.00元
b套餐原价:15.40元 现价:10.00元
c套餐原价:15.00元 现价:10.00元
d套餐原价:15.00元 现价:10.00元
e套餐原价:18.00元 现价:10.00元
f套餐原价:14.40元 现价:10.00元
学生讨论:如果你买,你选哪一套?
2.教师出示价格表
a套餐原价:16.90元 现价:12.00元
b套餐原价:15.40元 现价:10.78元
c套餐原价:15.00元 现价:12.00元
d套餐原价:15.00元 现价:12.00元
e套餐原价:18.00元 现价:13.50元
f套餐原价:14.40元 现价:12.24元
学生讨论:现在买哪一套最合算呢?
3.教师出示价格表
每套18.00元,冰淇淋7.00元.
第一周:每套16.20元;买一个冰淇淋回赠2元券.
第二周:降价20%;买一个冰淇淋回赠2元券.
第三周:买5套以上打七折;买一个冰淇淋回赠2元券.
学生讨论:
(1)你准备在哪一周买
(2)你打算怎么买?
(3)你设计方案的优点是什么?
六年级百分数教案5篇相关文章: